Big Data in the Legislative Process
https://doi.org/10.17803/1994-1471.2020.118.9.019-031
Abstract
The paper elucidates possible directions of the use of the big data technology in the framework of legislative activities. The authors determine essential characteristics of the big data technology, which act as a prerequisite for its implementation in the field of public administration. The authors describe the existing practices of implementation of this technology in the field of jurisprudence. Taking into account the well-established processes of using big data in the private sector, the authors evaluate the prospects of using this experience in the process of developing regulatory legal acts, including their correlation with specific stages of the legislative process. Particular attention is paid to the analysis of individualized regulation and granular norms, as well as to the grounds and features of the use of microdirectives as a result of the use of big data in rules of law formation. In conclusion, the authors enumerate a number of problematic aspects (the problem of legal certainty, ensuring the principle of equality), which are exacerbated by the use of the big data technology in legislative activities, and substantiate application of a number of additional requirements that help to minimize these threats.
Keywords
About the Authors
S. S. ZeninRussian Federation
Sergey S. Zenin, Cand. Sci. (Law), Associate Professor, Head
ul. Sadovaya-Kudrinskaya, d. 9, Moscow, Russia, 125993
D. L. Kuteynikov
Dmitriy L. Kuteynikov, Cand. Sci. (Law), Senior Lecturer, Department of Constitutional and Municipal Law
ul. Sadovaya-Kudrinskaya, d. 9, Moscow, Russia, 125993
I. M. Yapryntsev
Ivan M. Yapryntsev, Cand. Sci. (Law), Advisor to the Judge
pl. Senatskaya, d. 1, St. Petersburg, Russia, 190000
References
1. Lerman J. Big Data and Its Exclusions // Stanford Law Abstract. — 2013. — Vol. 66.
2. Alpaydin E. Introduction to Machine Learning. 3rd ed. / Ethem Alpaydin. — Cambridge : The MIT Press, 2014.
3. Dale R. Law and Word Order: NLP in Legal Tech // Natural Language Engineering. — 2019. — 25 (1). — Pp. 211—212.
4. Francart T., Dann J., Pappalardo R., Malagon C., Pellegrino M. The European Legislation Identifier // Knowledge of the Law in the Big Data Age. — 2019. — Vol. 317. — Pp. 137—148.
5. Ben-Shahar O. and Porat A. Personalizing Negligence Law // New York University Law review. — 2016. — Vol. 3. — No. 3.
6. Mark A. Cohen. Why Is Law So Slow To Use Data? // URL: https://www.forbes.com/sites/markcohen1/2019/06/24/why-is-law-so-slow-to-use-data/#14ffc709b8eb.
7. Francesconi E. Reasoning with Deontic Notions in a Decidable Framework // Knowledge of the Law in the Big Data Age. — 2019. — Vol. 317. — Pp. 63—81.
8. Big data, artificial intelligence, machine learning and data protection. The United Kingdom Information Commissioner’s Office. — March. 2017.
9. Medvedeva M., Vols M. & Wieling M. Using machine learning to predict decisions of the European Court of Human Rights // URL: https://link.springer.com/article/10.1007/s10506-019-09255-y#citeas.
10. Gardner S. Artificial Intelligence Poses Data Privacy Challenges // Bloomberg Law Privacy and Data Security. — 2016.
11. Online «Legislative Explorer» uses big data to track decades of lawmaking // URL: https://www.washington.edu/news/2014/04/25/online-legislative-explorer-uses-big-data-to-track-decades-of-lawmaking/.
12. Busch C. and De Franceschi A. Granular Legal Norms: Big Data and the Personalization of Private Law // Research Handbook on Data Science and Law / V. Mak, E. Tjong Tjin Tai and A. Berlee (eds). — Edward Elgar, 2018.
13. Hacker P. Personalizing EU Private Law: From Disclosures to Nudges and Mandates // 25 European Review of Private Law 651. 2017.
14. Porat A., Strahilevitz J. Personalizing Default Rules and Disclosure with Big Data // Michigan Law Abstract. — 2014. — Vol. 112. — Iss. 8. — 1417—1478.
15. Busch C. Implementing Personalized Law: Personalized Disclosures in Consumer Law and Data Privacy Law // The University of Chicago Law Abstract. — 86:309.2019. — Pp. 309—331.
16. Laney D. 3-D Data Management: Controlling Data Volume, Velocity and Variety // Application Delivery Strategies. — META Group. — February 6, 2001. — URL: https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf (data obrashcheniya: 07.05.2020).
17. Scheirer W. J., Jain L. P., Boult T. E. Probability Models for Open Set Recognition // IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI). — 2014. — № 11 (36).
18. Busch C. The Future of Pre-contractual Information Duties: From Behavioural Insights to Big Data // Research Handbook on EU Consumer and Contract Law / Ch. Twigg-Flesner (ed.). — Edward Elgar Publishing, 2016.
19. Lenz R. Big Data: Ethics and Law // SSRN Electronic Journal. — 2019.
20. Byers A. Big Data, Big Economic Impact // I/S: A Journal of Law and Policy for the Information Society. — 2015. — Vol. 10. — No. 3. — Pp. 757—764.
21. Sharyn O’Halloran S., Sameer Maskey S., Geraldine McAllister G., Park D. K., Chen K. Data Science and Political Economy: Application to Financial Regulatory Structure // The Russell Sage Foundation Journal of the Social Sciences. — 2016. — Vol. 2. — No. 7.
22. Lerman J. Big Data and Its Exclusions // Stanford Law Abstract. — 2013. — Vol. 66.
23. Citron D., Pasquale F. The scored society: due process for automated predictions // Washington Law Abstract. — 2014. — No. 89. — Pp. 14—15.
24. Using NLP and ML to Analyze Legislative Burdens Upon Businesses // URL: https://medium.com/@ODSC/using-nlp-and-ml-to-analyze-legislative-burdens-upon-businesses-e5cc106b85b0.
25. Mark A. Cohen. Why Is Law So Slow To Use Data? // URL: https://www.forbes.com/sites/markcohen1/2019/06/24/why-is-law-so-slow-to-use-data/#14ffc709b8eb.
26. Dale R. Law and Word Order: NLP in Legal Tech // Natural Language Engineering. — 2019. — 25 (1). — Pp. 211—212.
27. van der Sloot B., van Schendel S. International and comparative legal study on Big Data // wrr. The Hague 2016.
28. Medvedeva M., Vols M. & Wieling M. Using machine learning to predict decisions of the European Court of Human Rights // URL: https://link.springer.com/article/10.1007/s10506-019-09255-y#citeas.
29. Williams B. A., Brooks C. F. and Shmargad Y. How Algorithms Discriminate Based on Data They Lack: Challenges, Solutions, and Policy Implications // Journal of Information Policy. — 2018. — Vol. 8.
30. Francart T., Dann J., Pappalardo R., Malagon C., Pellegrino M. The European Legislation Identifier // Knowledge of the Law in the Big Data Age. — 2019. — Vol. 317. — Pp. 137—148.
31. Online «Legislative Explorer» uses big data to track decades of lawmaking // URL: https://www.washington.edu/news/2014/04/25/online-legislative-explorer-uses-big-data-to-track-decades-of-lawmaking/.
32. Francesconi E. Reasoning with Deontic Notions in a Decidable Framework // Knowledge of the Law in the Big Data Age. — 2019. — Vol. 317. — Pp. 63—81.
33. Ződi Z. Law and Legal Science in the Age of Big Data // Human Rights and EU Conditionality in the Western Balkans. — 2017. — Vol. 3. — No. 2.
34. Devi S., Arno M., Muhamed A. Osnovy data science i Big Data/Python i nauka o dannyh. — SPb. : Piter, 2017.
35. Porat A., Strahilevitz J. Personalizing Default Rules and Disclosure with Big Data // Michigan Law Abstract. — 2014. — Vol. 112. — Iss. 8. — 1417—1478.
36. Gardner S. Artificial Intelligence Poses Data Privacy Challenges // Bloomberg Law Privacy and Data Security. — 2016.
37. Ermakova E. P. Sitkareva E. V. Strategiya elektronnogo pravosudiya v Evropejskom Soyuze: pravosudie v seti Internet // Yusticiya. — 2014. — № 1.
38. Hacker P. Personalizing EU Private Law: From Disclosures to Nudges and Mandates // 25 European Review of Private Law 651. 2017.
39. Scheirer W. J., Jain L. P., Boult T. E. Probability Models for Open Set Recognition // IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI). — 2014. — № 11 (36).
40. Kruss V. I. Konstitucionnyj federalizm i sostoyatel’nost’ subfederal’nogo zakonotvorchestva // Gosudarstvennaya vlast’ i mestnoe samoupravlenie. — 2019. — № 12.
41. Laney D. 3-D Data Management: Controlling Data Volume, Velocity and Variety // Application Delivery Strategies. — META Group. — February 6, 2001. — URL: https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf (data obrashcheniya: 07.05.2020).
42. Sharyn O’Halloran S., Sameer Maskey S., Geraldine McAllister G., Park D. K., Chen K. Data Science and Political Economy: Application to Financial Regulatory Structure // The Russell Sage Foundation Journal of the Social Sciences. — 2016. — Vol. 2. — No. 7.
43. Kurakin A. V., Karpuhin D. V., Popova N. F. Principy razgranicheniya predmetov védeniya i polnomochij mezhdu organami gosudarstvennoj vlasti Rossijskoj Federacii i ee sub"ektami // Administrativnoe i municipal’noe pravo. — 2018. — № 11.
44. Using NLP and ML to Analyze Legislative Burdens Upon Businesses // URL: https://medium.com/@ODSC/using-nlp-and-ml-to-analyze-legislative-burdens-upon-businesses-e5cc106b85b0.
45. Lenz R. Big Data: Ethics and Law // SSRN Electronic Journal. — 2019.
46. Savel’ev A. I. Problemy primeneniya zakonodatel’stva o personal’nyh dannyh v epohu «bol’shih dannyh» (Big Data) // Pravo. Zhurnal Vysshej shkoly ekonomiki. — 2015. — № 1.
47. Lerman J. Big Data and Its Exclusions // Stanford Law Abstract. — 2013. — Vol. 66.
48. van der Sloot B., van Schendel S. International and comparative legal study on Big Data // wrr. The Hague 2016.
49. Fedoseev S. V. Primenenie sovremennyh tekhnologij bol’shih dannyh v pravovoj sfere // Pravovaya informatika. — 2018. — № 4.
50. Williams B. A., Brooks C. F. and Shmargad Y. How Algorithms Discriminate Based on Data They Lack: Challenges, Solutions, and Policy Implications // Journal of Information Policy. — 2018. — Vol. 8.
51. Mark A. Cohen. Why Is Law So Slow To Use Data? // URL: https://www.forbes.com/sites/markcohen1/2019/06/24/why-is-law-so-slow-to-use-data/#14ffc709b8eb.
52. Ződi Z. Law and Legal Science in the Age of Big Data // Human Rights and EU Conditionality in the Western Balkans. — 2017. — Vol. 3. — No. 2.
53. Medvedeva M., Vols M. & Wieling M. Using machine learning to predict decisions of the European Court of Human Rights // URL: https://link.springer.com/article/10.1007/s10506-019-09255-y#citeas.
54. Devi S., Arno M., Muhamed A. Osnovy data science i Big Data/Python i nauka o dannyh. — SPb. : Piter, 2017.
55. Online «Legislative Explorer» uses big data to track decades of lawmaking // URL: https://www.washington.edu/news/2014/04/25/online-legislative-explorer-uses-big-data-to-track-decades-of-lawmaking/.
56. Ermakova E. P. Sitkareva E. V. Strategiya elektronnogo pravosudiya v Evropejskom Soyuze: pravosudie v seti Internet // Yusticiya. — 2014. — № 1.
57. Porat A., Strahilevitz J. Personalizing Default Rules and Disclosure with Big Data // Michigan Law Abstract. — 2014. — Vol. 112. — Iss. 8. — 1417—1478.
58. Kruss V. I. Konstitucionnyj federalizm i sostoyatel’nost’ subfederal’nogo zakonotvorchestva // Gosudarstvennaya vlast’ i mestnoe samoupravlenie. — 2019. — № 12.
59. Scheirer W. J., Jain L. P., Boult T. E. Probability Models for Open Set Recognition // IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI). — 2014. — № 11 (36).
60. Kurakin A. V., Karpuhin D. V., Popova N. F. Principy razgranicheniya predmetov védeniya i polnomochij mezhdu organami gosudarstvennoj vlasti Rossijskoj Federacii i ee sub"ektami // Administrativnoe i municipal’noe pravo. — 2018. — № 11.
61. Sharyn O’Halloran S., Sameer Maskey S., Geraldine McAllister G., Park D. K., Chen K. Data Science and Political Economy: Application to Financial Regulatory Structure // The Russell Sage Foundation Journal of the Social Sciences. — 2016. — Vol. 2. — No. 7.
62. Savel’ev A. I. Problemy primeneniya zakonodatel’stva o personal’nyh dannyh v epohu «bol’shih dannyh» (Big Data) // Pravo. Zhurnal Vysshej shkoly ekonomiki. — 2015. — № 1.
63. Using NLP and ML to Analyze Legislative Burdens Upon Businesses // URL: https://medium.com/@ODSC/using-nlp-and-ml-to-analyze-legislative-burdens-upon-businesses-e5cc106b85b0.
64. Fedoseev S. V. Primenenie sovremennyh tekhnologij bol’shih dannyh v pravovoj sfere // Pravovaya informatika. — 2018. — № 4.
65. van der Sloot B., van Schendel S. International and comparative legal study on Big Data // wrr. The Hague 2016.
66. Williams B. A., Brooks C. F. and Shmargad Y. How Algorithms Discriminate Based on Data They Lack: Challenges, Solutions, and Policy Implications // Journal of Information Policy. — 2018. — Vol. 8.
67. Ződi Z. Law and Legal Science in the Age of Big Data // Human Rights and EU Conditionality in the Western Balkans. — 2017. — Vol. 3. — No. 2.
68. Devi S., Arno M., Muhamed A. Osnovy data science i Big Data/Python i nauka o dannyh. — SPb. : Piter, 2017.
69. Ermakova E. P. Sitkareva E. V. Strategiya elektronnogo pravosudiya v Evropejskom Soyuze: pravosudie v seti Internet // Yusticiya. — 2014. — № 1.
70. Kruss V. I. Konstitucionnyj federalizm i sostoyatel’nost’ subfederal’nogo zakonotvorchestva // Gosudarstvennaya vlast’ i mestnoe samoupravlenie. — 2019. — № 12.
71. Kurakin A. V., Karpuhin D. V., Popova N. F. Principy razgranicheniya predmetov védeniya i polnomochij mezhdu organami gosudarstvennoj vlasti Rossijskoj Federacii i ee sub"ektami // Administrativnoe i municipal’noe pravo. — 2018. — № 11.
72. Savel’ev A. I. Problemy primeneniya zakonodatel’stva o personal’nyh dannyh v epohu «bol’shih dannyh» (Big Data) // Pravo. Zhurnal Vysshej shkoly ekonomiki. — 2015. — № 1.
73. Fedoseev S. V. Primenenie sovremennyh tekhnologij bol’shih dannyh v pravovoj sfere // Pravovaya informatika. — 2018. — № 4.
Review
For citations:
Zenin S.S., Kuteynikov D.L., Yapryntsev I.M. Big Data in the Legislative Process. Actual Problems of Russian Law. 2020;15(9):19-31. (In Russ.) https://doi.org/10.17803/1994-1471.2020.118.9.019-031